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The GOLDEN RULEThe GOLDEN RULE

Find a value of a variable x,
that optimizes a function

DO NOT:DO NOT:

Find a distribution over x,
that optimizes an expectation value

INSTEAD:INSTEAD:



ADVANTAGESADVANTAGES

1) Arbitrary data types.
2) Leverages continuous-space optimization.

(“Gradient descent for symbolic variables”.)
3) Akin to interior point methods.

•   Deep connections with statistical physics and
game theory. So

    -  Especially suited for distributed domains.
    -  Especially suited for very large problems.



1)1) What is distributed control, formally? What is distributed control, formally?

2)2) Review information theory Review information theory

3)3) Optimal control policy for distributed agents Optimal control policy for distributed agents

4)4) How to find that policy in a distributed way How to find that policy in a distributed way

ROADMAPROADMAP



1) A set of N agents:   Joint move x = (x1, x2, ..., xN)

2) Since they are distributed, their joint probability is a
product distribution:

• This definition of distributed agents is adopted from
       (extensive form) noncooperative game theory.

WHAT IS DISTRIBUTED CONTROL?WHAT IS DISTRIBUTED CONTROL?

q(x)  =  ∏i qi(x i)



EXAMPLE: KSATEXAMPLE: KSAT

• x  =  {0, 1}N

• A set of many disjunctions, “clauses”, each 
involving K bits.
E.g., (x2 ∨ x6 ∨ ~x7) is a clause for K = 3

• Goal: Find a bit-string x that simultaneously 
satisfies all clauses. G(x) is  #violated clauses.

• For us, this goal becomes: find a q(x) = ∏i qi(xi) 
tightly centered about such an x.

The canonical computationally difficult problem

EXAMPLE: KSATEXAMPLE: KSAT
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1) Want a quantification of how “uncertain” you are
that you will observe a value i generated from P(i).

2) Require the uncertainty at seeing the IID pair (i, i')
to equal the sum of the uncertainties for i and for i’

3) This forces the definition

               uncertainty(i)  =  -ln[P(i)]

REVIEW OF INFORMATION THEORYREVIEW OF INFORMATION THEORY



4) So expected uncertainty is the Shannon entropy

S(P)  ≡   -∑i P(i) ln[P(i)]

  • Concave over P

 •  ∇(P) is infinite at border of space of all P

5) Information in P, I(P), is what’s left after the
uncertainty is removed: -S(P).

REVIEW OF INFORMATION THEORY  -  2REVIEW OF INFORMATION THEORY  -  2
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ITERATIVE DISTRIBUTED CONTROLITERATIVE DISTRIBUTED CONTROL

Can do (2)→ (3) without ever explicitly specifying s

1) s is current uncertainty of what x to pick, i.e.,

uncertainty of where q(x) is concentrated.

• Early in the control process, high uncertainty.

2) Find q minimizing Eq(G) while consistent with s.

3) Reduce s. Return to (2).

4) Terminate at a q with good (low) Eq(G).



1) The central step is to “find the q that has lowest
Eq(G) while consistent with S(q) = s”.

2) So we must find the critical point of the Lagrangian

      L(q, T)  =  Eq(G) + T[s - S(q)]  ,

      i,e., find the q and T such that ∂L/∂q = ∂L/∂T = 0
    •  Deep connections with statistical physics (L is

            “free energy” in mean-field theory), economics

3) Then we reduce s; repeat (find next critical point).

  ITERATIVE DISTRIBUTED CONTROL - 2ITERATIVE DISTRIBUTED CONTROL - 2



1) S(q)   =  -∑i [bi ln(bi) + (1 - bi) ln(1 - bi)]

where bi is qi(xi = TRUE)

2) Eq(G)  =  ∑clauses j, x q(x) Kj(x)

    =  ∑clauses j, x, i ∏i qi(xi) Kj(x)

where Kj(x) = 1 iff  x violates clause j

Our algorithm:   i) Find q minimizing  Eq(G) - TS(q);

        ii) Lower T and return to (i).

EXAMPLE: KSATEXAMPLE: KSAT
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So control reduces to finding q such that ∂L/∂q = 0

1) Since the agents make their moves in a distributed
way, that q is a product distribution.

2) But they must also find that q in a distributed way.

3) There are two cases to consider:
i)  Know functional form of G.
ii) Don’t know functional form of G - must sample.

DISTRIBUTED SEARCH FOR qDISTRIBUTED SEARCH FOR q



1) Each i works to minimize L(qi, q(i)) using only partial
information of the other agents’ distribution, q(i).

2) The qi(xi) component of ∇L(q), projected onto the
space of allowed qi(xi), is

β Eq(i)
(G | xi)   +  ln(qi(xi))

—
∫dx′i [β Eq(i)

(G | xi)  + ln(qi(x′i)) ]

• The subtracted term ensures q stays normalized

MINIMIZING L(q) VIA GRADIENT DESCENTMINIMIZING L(q) VIA GRADIENT DESCENT



3) Each agent i knows its value of ln(qi(xi)).

4) Each agent i knows the Eq(i)
(G | xi) terms.

Each agent knows how it should change

its qi under gradient descent over L(q)

5) Gradient descent, even for categorical variables
(!), and done in a distributed way.

6) Similarly the Hessian can readily be estimated (for
Newton’s method), etc.

GRADIENT DESCENTGRADIENT DESCENT  - 2  - 2



1) Evaluate Eq(i)
(G | xi)  - the expected number of

violated clauses if bit i is in state xi  -  for every i, xi

2) In gradient descent, decrease each qi(xi) by

 α[Eq(i)
(G | xi) + T ln[qi(xi)]  -  constj]

where α is the stepsize, and constj is an
easy-to-evaluate normalization constant.

3) We actually have a different T for each clause,
and adaptively update all of them.

EXAMPLE: KSATEXAMPLE: KSAT



1) In adaptive control, don’t know functional form
of G(x). So use Monte Carlo:

     -  Sample G(x) repeatedly according to q;

    -   Each i independently estimates Eq(i)
(G | xi)

       for all its moves xi;

    -  Only 1 MC process, no matter how many agents

So each qi can adaptively estimate its update

ADAPTIVE DISTRIBUTED CONTROLADAPTIVE DISTRIBUTED CONTROL



i) Top plot is Lagrangian value vs. iteration;
ii) Middle plot is average (under q) number of constraint

violations;
iii) Bottom plot is mode (under q) number of constraint

violations.

EXAMPLE: KSATEXAMPLE: KSAT



CONCLUSIONCONCLUSION

1)1) A distributed system is governed by aA distributed system is governed by a
        product distribution q, by definition.product distribution q, by definition.

2) So distributed adaptive control is adaptive 2) So distributed adaptive control is adaptive 
    search for the q that optimizes     search for the q that optimizes EEqq(G).(G).

3) That search can be done many ways,3) That search can be done many ways,
        e.g., gradient descent, with or withoute.g., gradient descent, with or without
    Monte Carlo sampling.    Monte Carlo sampling.


